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1. Introduction

From potential theory It is well known that a series of spherical -

harmonic s of the gravity field is converg ent outside the “minimum sphere ”
enveloping all masses. In many studies It has been shown that for certa in
earth models the series may be extended to a sphere entirely within the surface
of matter or the radius of convergence might be located somewhere between
these extremes . For references , see Moritz (1961), Molodensky et al. (1962,
pp. 118—120) , PIck (1965), Morrison (1969), Hotlne (1969, pp. 172—173) and
Levallois (1972) .

Moritz (ibid.) showed that if the earth were a homogeneous obiate
— spheroid ( a level ellipso id), then the series for V would converge at the surface .

- 

- 
Levallois studied the condition for extension of the series down to the surface
of a homogeneous , approximately spherical body. For such a body he found the

• following condition for conve rgen ce at the surface:

• k~< (0.132)~

where

-

~~~

2n+1

= fully normalized spherical harmonics

For the earth we have, according to Kaula ’s rule :

(1.1) k~~~ 10 5/n2

Thus the condition above is not satisfied in this case. Some other models and the
corresponding radii of convergence of the series are given by Morrison (ibid).

However , in all these studies the models are eithe r homogeneous or
bodies of revolut ion. Already a small disturbing body with mass centre located
outside a homogeneous sphere makes the harmonic series divergent at the
surface of the sphere (see the previous references of Mor ltz , Molodensky et al.,
Pick and the example 3.1 below). Henc e, because of the irregular mass

• distr ibotlons of the actual earth the series of spherical harmonics must be
cons idered divergent at the surface of the earth (Moritz , 1961).

—1-•
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These the oretic al aspects do not imply that the analytic continuati on
of gravimetric quantitie s down to the surface of the earth is meanin gless. Moritz -:
(1969) has paid attention to this fact and states that asymptotic series , which
are mathematically speak ing divergent , are frequently used in mathemat ical
physics. “Such series can be used if the first terms decrease rapidly enough
for their sum to provide a good estimation to the func t ion tobe calculated ; it
will not matte r practically if the neglected higher terms will start increasing
again . The practical use of divergent series needs , however , to be justifi ed.
An arbitrarily accurate approximation can be obta ined only with convergent series;
with divergent asymptotic ser ies, this error cannot be reduced below a certain
limit . It must be investigated whether this limit is small -enough so as to be in
keeping with the desired accuracy.”

The main object of this report is to estimate the downward continuation
error of the representation of the gravity f ield by a series of spherical harmonics
at the surface of the earth. We start with a definition of the problem.

2. Definit ion of the Problem

In the volume external to a sphere enclosing all mass of the earth ’
(the minimum sphere, or Brillouin sphere) the grav ity potential ‘of the earth is
harmonic and can be expanded into a series of spherical harmonics:

(2.1) V

whe re

v,~ = ~~ ~~ cos mA + 
~~ sin mA) P~~(cos 8) -

G = Newton’s constant of gravitation
M = mass of the earth
R rad ius of the “minimum sphere”
(r , 8, A) = spherical coord inates
., = fully normalized spherical harmonic coeffic ients

P~. (cos O~ = associated Legendre function

In many cases the potential V is substituted by the disturbing potential: —

T = V - U

‘ The atmosphe re of the earth is not cons idered 
-
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where U Is the normal potential (usually consisting of the harm onics
U0 = V0 , U20 and U1~,). In this case the series expansion in formula (2.1)
starts at n = 2 and the coefficients for T~o and T4 0  are now considered as
corrections to the normal potential.

Inserting the serie s expans ion of T into the sphe r ical approximation
of the boundary cond ition of physical geodesy (see Heiska nen and Moritz , 1967 ,
p. 88): -

I

(2. 2) Ag =- .

~~~~~

— —

the gravity anomalies (ag) are obtained in a ser ies of the potential harmonics:

- 
a+2

(2. 3) - ~ g =5’ (. -) ~~~

where

Ag~ = 2ã~
L (n - l) 5’ (~~, cosmA + ~ .sin m A)~~~.(cosO)

From (2.2) it is easily shown that rAg is harmonic in the same domain as T,
I. e. outside the surface of the earth (if the influence of the earth ’s atmosphe re
is neglected).

The coefficients 
~~~
,, and S of the series (2.1) and (2.2) have been

determined to various degrees (N) from terrestrial gravity observations , satellite
observations and from combinations thereof. From these coeffic ients the external
gravi ty field can be determined by a truncated series :

A R n +l
(2.4) V = ‘

~
‘ (—) v~

The se truncated serie s are theoretically correct outside the “minimum
sphe re ” (R = 6384. 403 km for a = 6~78. 140 km , see Appendix). Now the
question arises whethe r the series V and 4 can be analyt ically cont inued down

- to the su rface of the earth . More precisely: What is the error of such a repro-
sentation ? Is It possible to find simple correction terms ?

-3-
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3. A Simple Model

Before going deeper into the problem of estimating the errors of using
spherical harmonic series at the surface of the earth , we would like to present
a simple, Illustrative model.

A disturbi ng point mass m is located outside a homogeneous sphere
M with radk~s r0.  The distanc e to m from the center of M is R. See Figure
3.1. At a point P of distance L from m the disturbing potential is: t

~~~~~~~~~ 
_ _ _ _ _ _ _ _ _

L (R d +r d~2r R cos 4,)~

where

G = Newton’s constant of grav itation —
= the angle between the radius vectors ~ and R

r = distance from the center of M to P

m
- 

-
~~ P

- R r
‘I,

M

Figure 3.1. A homogeneous sphere w ith an exterior disturbing
point mass m.

-4-
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At a point outside a sphere with the same center as M and radius R the closed
formula for T can be expanded in the follow ing serie s of Legendre ’s polynomials :

(3.1) T, = ~ _ 5 ’ ( .~-)’~~~ (cos 4)) , r > R

Applying this formula at the surface of M we obta in:

(3.1’) 4 =

Th is series is divergent f~r N = ~~~, because R >  r0 .  The correct value for the
disturbing potential at M Is given by:

(3. 2) T1 = _______________  = .

~~~

- ‘5’ (~2.ç’p~ (cos 4))
(r0 +R - 2ro R cos4))~ r0 ~

n = 0

A
Thus we obtain the following error of T:

E r (N) T- T1 = ÔT(N) + e1 (N)

whe re 6 T (N) is the erro r of analytic cont inuation and eT (N) A is the truncation
error. The truncation error is caused by the truncation of T at degree N:

eT(N) = - ~— 
~ 

(cos 4))
r0.~ R

n N + 1

The downward continuation erro r is defined by:

6T(N) = ’5’ 6T~ 

- --~~~- - -~~~~~~~~~ _ _ _
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where 6T~ is the error caused by the improper downward continuation of (T .) ~to the surface of the main sphere. We have:

6T~ = (T. )~ — (T:)n = C~ (T~)~

where

= ~~ ( r ) ~~’ P~ (005 4))

and

The coeffic ient c~ is the relativ e erro r of (T~)~ . Inserting R = r0 + h we obtain:

/ ~_ .~2fl +1
cn ç1 +~~~) -1~~~(2n + 1)~~-

r0 - 
r0

In Figure 3. 2 the true value of the geoidal heights (T1 IV) and some estimates for
downward continuation are shown. In Figure 3.3 the relative error c~ is Illustrated .
Finally, in Figure 3.4 the relat ive error

6 T ( N )/ 5 ’( T1)~ - 
-

is given. The figures show that the relative errors are inc reasi ng with the
elevation (h) of the disturbi ng mass and with the degree (U respective N).

Now we proceed to study the errors of the gravity anomalies. In the
external case the radial derivative of T is obtained from (3. 1):

H n+3
(3 3) = - (11+1) (_ ) 1~,, (cos 4)) r > R

—6—
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For r< R we have from (3.2) :

(3.4) (F) = 
~~~~~~ 

(f)1i~ (coS 4)) r < R

S
Both of these series are divergent for r = B. In this case we obtain the
derivative directly from the closed formula (3.2) :

3

3 5  f~T\  — I’ r = R
( . ) 

~~~~~ 2/~~R~(1-cos 4))* ‘

The gravity anomaly Is given by formula (2.2) :

~T 2T
~ r r

Hence the formulae for Ag corresponding to (3. 3) through (3.5) are :

(3.6) Age = ~~~~~~(n— 1) (.L~~~~1 (cos 4)) , r > R

(3.7) Ag1 = — ~~~5 ’ ( n+2) (fr ) P~ (cos 4)) , r < R

and

(3.8) (4g )~~1 - . 7  ‘

Let us assume that we use a truncated form of formula (3. 6) to represent the
gravity anomaly at the surface of the main sphere ~r = ro):

N 
H

~~~~~~~
= .

~~~~~~~~~~~~~~ (fl~~~~~~~) (;;) P~ (cos 4))

-10—
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where N Is the degree of truncation. The true anomaly at this level is given by
(3.7) . Thus the total error of 4 becomes:

where 6 Ag (N) is the error of the analytic continuation and e~ (N) is the truncation
error. We obtain :

e~~(N)=  -V (~ g1)1
n N +  1

and

6Ag ( N ) = 5 ’ 6 A g,~

where

= d~ (~ gj) n

(~Ag1)~ = - .L~ (n +2) (iQ.) p~ (cos 41)

d~ = - I i+  !~~~ (R ~~~~
l
1L n +2 ~~r0 --

The coeffic ients c~ and I d~ I are the relat ive errors of the n th harmonic of
the anomalous potential and the gravity anomaly, respectively. c1 approaches
zero for H-’ r0 • ThIs is not the case for d1.  The series Ag. is not conver-
gent for r0 = H. The reader should notic e that the usual relation between the

- - harmonics of the potential and the gravity anomaly Is not valid in this case
- 

- - (see Heiskanen and Moritz , 1967, p. 97):

6Ag~# !Li~ 6T1

—11— 
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The influence of the distu rbIng masses on the anomalies Is more pronounced - 
-

than for the potentials . One reason for this is that while the disturbing
potential is dependent only on the distance to the disturbing masses, the
contribution to the grav ity anomalies from masses located above the point
of computat ion usually have opposite sign to that obtained In the downward
continuation procedure.

Finally, we derive the errors of the vertical grad ient of the grav ity 
- -

anomalies. We have:

~~~~~~~ 

= - -

~~~ 
5~ (n -1)(n+2)(.~.)’ P1 (cos 4)) -

~ 
-

____ = - V (n+2) ( n —i)  ~~~~~~~~~~~~~~~ (cos 4))

Hence, f o r r = r 0 :

(6 gr )~ = - (~~) [(
~J~ 11 

(~~~~~~~~~~~ )

where

(.~~&) - (n - 1) (n+2) (h.)~~p~ (cos 4))

We notice tha t the relative error of ~ Ag is of the same orde r of magnitude

as that for T. Thus the spherical harmonic series for ~4g is converg ent for

R = r0 (cf. the gravity anomal ies) . For this example, we have the relation :

4. The Er ro r of the Potentlal

- - We are now going to estimate the errors of extending the potential
series (2. 1) to the surface of the earth. Some error estimates of this type
were given by Cook (1967) and Leva llols (1969). See formulae (4. 5 a -b) and
below. See also sectIon 4.3 .

-12—
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- H
, 1 V/ / /’/J~

s Topography H

/////// Curr ent point
r�r1 �r9 ” ’ i - I

r 
Sphere Of 

~~~~~

FIgure 4. 1. The potential is computed at a point P of distance r
from the earth’s center. The sphere of radius r is
denoted the sphere of computation . The topographical
masses between this sphere and the minimum sphere
makes the spherical harmonic expansion V. divergent
at P.
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The Newtonian potential of the earth at an arbitrary point is:

(4. 1) V = J’J’$ -~ dv

where

V = volume of the earth
= GP

G = Newton’s constant of gravitation
P = density of mass
£ = (r 12 + - 2r1 r cos 4))

= radius of the current point inside the earth
r = radius of the point of computation (See Figure 4.1)
4) = geocentric angle between the vectors ~ and 1

At points outside the “minimum sphere” ~r >  R) formula (4. 1) can be expanded
into the following series:

(4.2) = 

n O V  

~ (.~i)~ P~ (cos 4) ) d v

The corresponding convergent series for points inside the minimum sphere
(r < R ) ls:

(4. 3) V1 = .i~~J’J [ ‘ M ( .~ .)~+ 511 ( r )
Ul

~l

J 
P1 (coB 4)~

where r , Is the radius of a current point at the surface of the earth
(r ~ r1 ~ r .) and C is the unit sphere. See Figure 4.1.

The error ôv of extending formula (4. 2) to a point inside the minimum
sphere is given- by the diffe rence between (4. 2) and (4. 3):

(4. 4) Ov =~~ 6v~

-14-
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— where

(4.5a) 6v 5 = .~~- J’$ ~ 
[(~~~i)~~~ (LT 1 P5 (cos4)) d i ’  , r1 ~~R

or

1 n+ 1 r 5+1
(4. 5b) 6 v5 = — if 5 ~~ (L) [

(_i~~ - 1] P5 (cos 4)) di’

Formulae (4. 5a -b) were derived by Cook (1967) and Levallois (1969) . Cook
drew the conclusion that this error is In the orde r of J~ where J 5 is the n-th
zonal harmonic of the earth’s gravity field. This result can easily be combined
with Kaula ’s rule of thumb (1.1) for estimating the error of a series of
spher ical harmonics. Even if the series were extended to infinity, the error
would be negligible, so that “the ‘satellite geoid’ is a close enough approximation
to the true geoid”. However , It is not at all obvious that 6v 5 according to
(4.5 a-b) is of order J~~. Leva llois (1969) came to a different result , which
is reported in section 4.3.

In this section and section 4.1 we are going to develop a formula for
6 v~ which can be used in a numerical integration. From Heiskanen and
Moritz , 1967 , p. 33 we obtain :

(4.6) P5 (cos*) = 1
L_

1V [~5.(e,x)L.(e1,A1)+ s5.(e,X)~ .(e1,A1)]

where

L., ~~. 
= fully normalized spheri cal harmonics.

We have

(4. Ga) $$ L~ ~~~~~~ do = 0 for all n, n’, m and m#

and

p (4. Gb) 1/4 ~T tI51 U5’.- do = 6~ - 6g.’

where U,~ is any of the harmonic s L or ~~ and 6 is the K ronecker ’s delta.
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From formulae (4.5a) and (4.6a-b) we obtain:

(4. 7*) 6 V5 = I 1 R,,~ (9, A) +B~ S,. (0, A -)1

- 
- where - -

(4.Th)

{:} = 
(2n+1) rll1

If we assume that s = p (6,A) ( independent of r), we obtain:

(4. 8a) = ~ ~ ii., r.) {~~
‘} do

where

0 If r �r .

(4. 8b) I( r,r .) = 

r {  
.htr’ i + 

(r./rf~”~~~-i  if r < r . ,n~~2

(r./ r)’-l - ~i ( r ./r) if r < r ,, n = 2

Formulae (4.8a-b) can be appl ied with ~s = = constant If we neglect the
ellipticity of the earth (spherical earth with topography). The integration Is
then performed over the topographical masses. If we also consider the earth’s
elliptic ity the integration will include the masses of the oceans above the lower
bo*~ d r of the Integration. See FIgure 4.2. If we assume that the oceans have
the constant density gs a, and the sol id crust the constant density Mo the integral

— (4.7b) becomes ~aee FIgure 4.3):

1 R,. (9,A)
(4.8c) {b ,11}= ~~~ J $ M I ( r , r.) {L (e,A) } do

where

p I ( r , r ,) = M o I ( r , rb) + ~~ I (r b , r .)
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Minimum sphere

- 

R
Earth ellipsoid

Topogra phy

—

Ocean

Figure 4.2. The computation of the error coeffic ients a51 and b,,,
for any point P on a selected sphere of radius r (sphere
of computation) includes the integration of all masses of
the oceans and topography between the spheres of radii
r and R.

PW Ocean

Ocean Bot tom

Figure 4. 3. The density of the masses above the sphere of computation
is Mo for the solid crust and ~~w for the ocean.
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I (x,y) = ;;~r S ~~~ [i - (L~ 5 ’]  dr 1

= geocentric radius of the bottom of the ocean.

The Integral I (x , y) Is straight forward and the result Is (of. 4. Sb) :

0 If x � y

l(x,y) = r2 { (y/r)~
3- (x/r )~

4 3 
+ 

( n y  a _(r /*r x <y , n # 2

(y/ r)5 - (x/r)6 
- ~f l  (y/x) , x < y  , fl = 2

The coeffic ients i~ and E,, can be used to correct the spherical harmonic
development of the potential’at all points on the sphere of computation with
radius r. Then we add a correction:

= - ..& f
95I

~ (~~. % ~~~‘

~~~~ S GM 1~~~~~J \i~ I

to each potential spherIcal harmonic coeffic ient of the series expansion. It
should be emphasized that these corrections are valid only for the potential
and cannot be used for improving near surface expansions of gravity anomalies
(cf. section 6).

From (4.5 a) we draw the conclusion that if the masses between the
spheres of radii r and R were symmetrically distrilaited with respect to the
earth’s axis of rotation, then all tesseral harmonics 1 and b (With m~~0)
would vanish . This Is obvious because in that case (4. 7b)becomes :

(4.9) = Q5 R .  dA sin O d O
9= 0  A = 0

where
‘a 5+1

= 

~ n+i~ r
5
~’ ~ ~i r1~~~ [i — (

~-~ J dr 1

+ See formula (2. 1).
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r~ t

and

for m # O

• The same is true for b51 . However , for the real earth with Its irregular ma~~distr ilxitions this assumption is not val id.

4.1 An Approximate Formula

Formula (4. Sb) can be app rox imated in the following way (for —

H = r , — r > 0 ) :

( ) fl+ 3 
( i÷_~~~=~~~ (’~~3) (H ~~ =

= 1 + (n+3) 1!. + 3~~~ 2) (H ’ ~~ (fl+3)(n+2)(n+ 1) (!Li~+ (n+3)(n+2)(n+ 1)n (H~~~
r 2 \ r J  1x2x3 ~r ’ 2 x 3 x 4

and

(H)
k 

=

= 1 - (n—2) H + (n-2)(n -1) 
(H )

2 (n—2)(n —1)n (.
~

)°÷ (n—2)(n—1 ~n (n+11 t’A~ +~~•~r 2 r 1x2x3  r 2x3x4  ‘ r /

— Inserting these series expansions into (4. Sb) we obtain:

- . 
(4. 10) I ( r ,r,) = (2n+1) H2[.~.+ +  ~~~ + ~(] +1) (.~L)

3
+ ...J

In Table 4.1 we compare formula (4. Sb) w ith the approximation
(2n + 1) 112/2 accordIng to formu la (4. 10). It is shown that the erro r Is increasing
with the degree (n) . For n= 50 the erro r Is less than 1% and for n = 100 it is

- - almost 2%.
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Table 4.1

Comparison between (2ii+1) 112/2 and I (r , R)
H =6384 km , H=R-r= 27 km. Units : kin2

n (2n+1) 112/2 I ( r, H) Diff. Duff. /1%
_— -

10 7654. 5 7677.4 22.9 0.3
30 22234. 5 22328.6 94. 1 0.4
50 36814. 5 37060.1 245.6 0.7

100 73264. 5 74591 1327 1.8
150 109714. 5 113812 4097 3.6
200 146164. 5 155627 9462 6.1
250 182614 201019 18404 9.2

Inserting (4. 10) into (4. 8a) and neglecting terms of order and higher

we fInally arrive at :

(4.11) {~::}= *i’S M }12 {~~}dc

where

r ° if r � r ,
H = ~~L r ,- r  r < r ,

If we also consider the elllpticlty of the earth we obtain from (4. 8c):

(4. 11*) {::} ~J~S [(it o _ M w )  H~~+ M v 
~~~ {~~~~}‘~

0

where

Mo = density of the solid crust
Mv = density of the oceans

H If continent
lib = { 0 if ocean with r~~rb

rb-r otherw lse.
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4.2 Effect of Ellipticity

In this section we are going to study the error of extending the spherical
harm onic expans ion of the potential to a point P at the surface of an oblate
homogeneous ellipsoid (see Figure 4. 4) . The error is caused by the masses
outside the sphere of computation of radius r.

- z

~~~~ ‘P7 ~~~

_ _ _ _  
e

R 
rE

-
~~~~— .—

—.
— 

-

Figure 4. 4. The downward continuat ion error at P is
obtained by integration over the (shaded)
masses between the spheres of radii
r and R.

The error coeffic ients due to the improper downward continuation can be
determine d by formula (4. 11). With notation s accordi ng to Figure 4.4 , we
obtain:

r~ = R A/i e; sin2 & 
, r R
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and

— H = r~ - r = !~— (005
2 

~~0 - co.3 9) + 0 (e4)

It has already been shown in (4.9) that the coeffic ients i~ and ~~ are 0 for
m~~ 0. For m = O w e  obtain from (4. 11) and the above expresslon for H, • - 

-

when neglecting terms of order higher than e4 :

(4. 12a) = C e4 $ (cos~ 9~ — cos2 9)2 P5 (coB 9) sin 9 d 9

9=90

whe re

c = G p n R 2/4

In the special case ~~~~ 0 we have:

(4. 12b) = ce’ ~ (1 - cos2 9) 2 P~ (cOB 0) sin 9 d O

The factor (1- 008
2 9)2 is readily rewritten:

- ( 1—co82 9)2 = C0 + c3 P3 (008 8) + c4 P4 (cos 8)

where

— 8 16 8
- , c2 = - - , c4 =

Inserting this expression into (4. 12b) and using the orthogonality property of the
Legendre’s polynomials:

1 2 n = m

f P5 ( t)
0 n # m

L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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we finally arrive at

c0 if n = 0
— 

- — 4 r c~ If n = 2
— a 50 = 2ce c,~ if n = 4

0 otherw Ise

For P = 2.67g/cm3, H = 6378 km, r0 = 6371 km, y=  978 gal and
e2= 0.0067 we obtain :

~~~ = 27 .9m I !~~ I~~~4.3 x10_8
y yr0

=-17. 8 m a31 
~ 5.8 x 10~~y yr0c20

!t9 = 4.O m I ~~~ k i . iy yr 0 C40

Fro m these coeffic ients we obtain the following downward continuation
error at the poles (9~ = 0):

4 _
1~o 12n+1 = 0 —

Thus the error s of the individual spherical harmo nics compensate each othe r at
the poles.

For an arbitrary point P (9~) on the surface of the ellipsoid the downwa rd
continuation erro r in an expans ion to degree N is given by:

• 8V(N) (r) P5 (coB 9o)

- - - 

Inserting (4. 12a) Into this formula and changIng the order of summation and integrat ion
we obta in:
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6V(N) = ce4 $ (ooB~ 0o-  cos~ 8f ’
~ P5 (cos 8) P~(coa O0)a1n O d O

80 n = 0

Using the substitutions :

—

t = c o s 9 , t0= coa O0

and

P5 (t) P5 (t0) = (2n+1) P5 (t~ P5 (t0)

we arrive at

N

(4. 13) ÔV(N )  = ce4 $ (t - t2)2 ‘
~ (2n+1) P5 (t ) P5 (to) dt

—
~~~~ 

n = O

It is shown in Proposition 4 of the Appendix that this formu la may be written :

Ô V ( N ) = c e 4 t gN(t)

where

— M( M+1) r~~ttJ— P ,_3(t ) PM~~(t)- B.(t)gN (t) — 2 
2M+1 L 2M~-1 l~i+i( t-o) - 2M+3 l~4-j (t0)

N If N is odd

N+1 If N is even

and

o �r ’ t0

The function g, (and subsequently 6v (N)) has the following properties:

gN (O) = gN (1) = 0

-24-
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_

and

u r n  g~ = 0
N-4a

From formula (6.9) we obtain:

ce2 gN (to ) =  ~ 8~~g (N)

and the rough approximation:

(4. 13a) 6V(N)~~ ~~ t : 6~dAg I( N)

where O~ g(N) is the downward continuation error of Ag In an expansion to degree N.
For R = 6378 km , e2 = 0.0067 and y = 978 gal we have :

6vtu ~~~ 0.011 1 8 Ag (N) meter,

where 6 ~.g is In units of mgal. From Fig . 6.1 we finally obtain:

ÔV(16) 
~ 0.45 m and ÔV(45) � 0. 19 m

V V

This development Indicates that the downward continuation error of the truncated
spherical harmonic expansion of V Is small and decreasing w ith the degree of
truncation. On the other land, the following spherical harmonic expans ion for
the potential in the exterio r of a homogeneous oblate ell ipsoid Is known from
potential theory (see MacMillan , 1958 , p. 363):

a

(4. 14) V. = 

~~~~~~~ 
(2n+1)(2n+3) (!~) Pa5 (coB 9)
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where M Is the mass of the elllpaoid. This development has the radius of
convergence ae, which is inside the ellipsoid. However, the potential provided

4 by (4. 14) Is correc t only on the surface and outside the ellipsoid. This fact l~
indirectly verified by letting e approach zero, in which case (4. 14) becomes:

GMV. - —r

This is the well known exterior potential of a homogeneous sphere. The radius
of convergence is zero.

In conclusion, formula (4. 13) is the difference between the expansIon
- - (4. 14) to degree N and a spher ical harmonic expansIon (at the radiu s r), which
- 

- is valid also ins ide the surface of matter. For N approaching infinity, the sums
of the two series are identical for exter ior points . Inside the surface of matter
they differ.

In geodesy, we are xn~inly Interested in the exterio r gravity field and
a potential expansion of the mean earth ellipsoid (MEE) similar to (4.14) 18 there-
fore most convenient. Unfortunately , this ellipsoid is not homogeneous and (4. 14)
can not be applied . However , the MEE is currently approximated by a level
ellipsoid, the external gravitatbnal potential of which can be expanded in the
following way EHeiskanen and Moritz , 1967 , formulae (2-88) and (2—9 1)1:

v. = 
3GM ( -1) (i - ~ + ~~ 

C - A ‘
~ ~~~~~

5
Pan (coB 8)

r L~ (2n+ 1) (2i1+3) “ M a3e2 / ‘~ r /
n = 0

where C and A are the princ ipal moments of inertia. If we antic ipate this model
for the mean earth ell ipsoid, there will be no contribution to the downward
cont inuation error from the ellipsoid. However , the previously derived correction
formulae (4. 8 a-b) and (4. 11) for the distu rbing topography needs a modification.
In these formulae it was assumed that the radius (r ,) of the mean sea level was
constant. Now we assume that: -

I 1—e 2
— R 

~ 1—es sln~’ ~~

Then (4.8 a-b) and (4. 11) are modified by inserting :

(4. 15) r = ~ 
r . if r < r ~

L r  If r > r 1
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Formulae (4. 8 a-b), (4.11) and (4. 15) should be feasible expressions for a
numerical study of the downward continuation error of the potential. Formulae
(4. 8c) and (4. h a )  are less convenient unless the spherical harmonic expansion
that Is valid at the entire sphe re of computation (also inside the earth) is required.

4.3 An Error Estimate for the Potential

- We may substitute 6 V of formulae (4. 4) through (4.7) by the error of
the disturbi ng potential, 6 T, if we assume that the reference field is unchanged.
Formula (4. 5b) is then written:

r,E - ~a+1
(4.16) 6T~ = 1. J’~fJ ’ ~~~ 

( ry”r (r i)  -

~~~~J 

p~ (cos ~P ) dv

— At sea level (r = r~ = R—H) this error Is of the following order of magnitude:

25+1
(4.17a) 6T~ [(.

~) _ i] AT~

where
5+1

(4. 17b) ~~T5 = i SSS ,~(!9) P5 (coS~~) d V

4 

For low degrees of n we may use the follow ing approximation:

(4.18) 6T 5 (2n+1) -~
.

~~T5 Is the contributIon to T5 from the topography. If we assume that the
disturbi ng potential Is generated entirely within the topography of the earth , we
have Lcf. formula (4.3)]: -

(4.19) AT , ~

Assuming that the low order harmonics of T Is only partly originated within the
topography, we may use the following approximation:
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(4.20) AT 5 = p5T 5

where

p5 = 1-e ~~~ ,

The coefficient a can be determined empirically by comparing a spherIcal . -

harmonic expans ion of AT (formula 4. 17b) W ith that of T. In the limit a= ~~ ,

(4. 20) is identical with (4. 19). For a = 0, we obtain AT5 = 0, that is, no
contribution to T5 from the topography. The approximations (4. 18) and (4. 19)
were used by Levalj ois (1969) In the following way:

ÔT = ~
‘ 6T 5 ~~ (2i1+1) T5 =

= H ~~~~~~~~~ g,~~ 2H~~ g

where we have used the relation :

* 
— 

n-i

The error of the geoidal height Is then:

For H = 27 km, Ag = 100 mgal and V= 980 gal this formula Implies:

ôN~~ 5m -

However, the approximation of (4. 17a) by (4.18) is adequate only for lower orders,
(say, n < 150). Consequently , the above order of the error does not hold if we
include harmonics to infinity.
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4.4 Global RMS Errors

Spherical harmonic s of different degrees and/or orders are orthogonal
to each other , see formulae (4. 6 a-b) .

• Thus, the global RMS error of 6 T Is given by: —

(4.21a) 116T 11 [~L~ ’J J (6T5)3 da]
1

where

(4.21b) ~~ j ’J’(6T 5)~ do = 116T 5112 E )

The last formula is obtained by substituting ( OV) 5 by ( Ô T)5 In formula (4. 7a) .
The total erro r of T for a tr uncated series of spherical harmonics is (cf. section 3):

(4. 22) E~~(N) 6T(N) + er (N)

where N is the orde r of truncatIon , 6 T (N) is the downward continuation error and
er (N) is the truncation error. We obtain :

(4.23) I I e r (N ) 1 l  = )~ JJ~’ T~ dcr ]~~= [~05aJ~N+ 1 N+1

where

are the degree variances of the potential. From (4.22) we arrive at the follow ing
formula for the total RMS error when noting the orthogonality between spherical
harmonics of different degrees:

IIE, (N)112 = 11 6T(N)112+ IIer(N)112

DefInition 4.1: The optimum degree of truncation (No~t) implies

I I Er (N) I I = minimum
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The dowiw~ard continuation erro r is increasing with N while the truncation error
Is decreasing, consequently, it €~ (N)~ Is inininiurn when the Nib term of
I I o T N I t  equals the (N+i)th term of tie r (N) tl , I.e. :

(4.24) jj bTN II = ~~~~ i-*-N =

An app roximation of Ô T N is obtained from (4. 17a) and (4. 19):

5+1

(4, 25) 6T~ 
~ 

[(. )2 -1] T5

where R is th~ radius of the minimum sphere (.
~ 

6384 kin) and r0 is the mean earth
radius (— 6370 kin) . Inserting (4. 25) into (4. 24) we obtain:

, ‘~aN + 1

~~~~ ~~~~~~~~
‘r0 1 ow 

-

As the degree variances are decreasing with N we eas ily arrive at:

(4.26) Nopt ~ r0
2n2 

, H = r - ro

or with the above numerical values for R and ro:

No~t~~ 158

The following values for the potential degree variances were given by Tscherning
and Rapp (1974) :

2 ~0 for n~~2
05 = j  A r 03 

8
5+1 > 2(n—2)(n—1)(u+24)

where

8 = (r~~./ro)
2 

= 0.999617
A =  425. 18 [mgal2 J
r0= 6371 Ll~m] (r o = 6370 km was used in the compitat lons.)
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The graphs of II ÔT(N) II Iv, It e r (N) ~j /~ and II Er (N) Il /v for these degree varia~~es
are illustrated in Figure 4.5. The total error II €~ Il /v is minimum for N = 157. —

This error is 1.17 m (~ 4. 7% relative error) . Most of this error (1, 05m) is due
to the downward continuation error.

In the estimates above we have assumed that:

r,

T5 AT5 = .L $$ $ (.1.2.) P5 (cos *) d
o r 0

A different approximation was suggested -in formula (4. 20):

AT 5 = p 5 T5

where

p5 = 1 - e ~~~ , O < a < ~~

For this estimate (4.25) and (4. 26) take the forms:

n+1
(4. 25~ 6 T~ = [(~~~

)

2 

_ i]  p5 T5

and

(4. 26) No~t~~ —

211

Let us assume that :

Pioo = 
AT100 _. 0.95
T100

This relation corresponds to a = 0.03. The resulting RMS errors for downward
contimiation~~e illustrated in Figure 4.5. It is shown that II o T II <4 % of 11Th for
N < 200 and the total RMS erro r is minimum for N = 158. ThIs minimum Is
approximately 3. 5% of II T il. The largest uncertainty of these estimates is the
relation H intro duced in the approximation (4. 17a) . The sensitivity of the

r0
solutions of 116 T Il and No~t for the diffe rence H = R-ro is obtained from the
following approximate solutions :
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ÔT (N) .!~ ~
‘(2n+1) T5

and

NoP t
~~~~~

_
2H

Differentiating this formulae with respect to H we arrive at :

(4 27) d öT(N)
1 .... 1

dN ~~ I = I~~L lÔT( N) N0~ H

Now H is in the orde r of 13 km and the e~ror dH -~may be several kilometers .
If we assume that dH ~ 4km , we obtain a relative error of 31%. Thus we conclude
that the RMS estimates given in this section might have conside rabl e errors due
to the uncertainty of the basic approximation (4. 17a) .

5. The Error of Gravi ty Disturbances

The error of downward continuation of the vertical derivative of V in
a ser ies expansion is obta ined from formulae (4. 2) through (4.4) :

6 ~.i = - .~.Yi.. -
~~-- o v

~ r ~ r ~r

If we subtract the normal field U from V in this different iation (and change sign
of the whele expression) we obtain the grav ity disturbance:

- 6r (V U)~~~~1T

Assuming that the normal field is the same for T.(=V. -U) and T1 (~ Vj  - U) we
have the error:

(5. 1) ~~6 ,, = - - ~. OT = -~~-6v
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where according to formula (4. 4) and (4. 5a) :

r,

- ôv = .1.. 
~~ Jr $ ~ [(. )_ (1-) ] p~, (008 4)) di’

44

We use the notation:

4O~

whei c

ö’v5

It is shown in the Appendix, Prop osition 1, that 4~, can be written:

= 

ra 

[(
.)

5 

(11+1) + (L)~~
1

n] P 5 (coS 4)) di ’

This expression can be rearranged in the following way:

4 n+l
J j S n [l ( r ) I P ( c o s 4 ) ) d P +

+ 
2ii-i-1 $$ $ 1.4 (!~) P5 (cos 4’) di.’

C~mparlng with formula (4. 5a) we find :

(5.2) = 
(11+1) 6 T5 + 2ii+1 , ~L ( . )

5+1 

P~ (005 4 1) di’
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where 6 T5 is the error of T 5 caused by the analytic continuatio n down to r.
Fu rthermore , we have for r = r0 [radius at mean sea level , cf. (4. 17b)J :

(5. 3) AT 5 = .1 
( . )

5 

P~ (coS 4’) di’
a r0

AT 5 is the contribution to the distu rbing potent ial harmon ic T5 from the anomalous
masses located outs ide the sphere of radius ro. Thus we have:

= [(n+1) 6T 5 + (2n+1) AT5]r0

or , afte r inserting (4. 17a) for 6T 5 :

~2 n + 1
(5.4) A =  ~~L [(n+l) (-~_) + n]

Finally , we sum the harmonics A~ to the degree of tru ncatio n (N) :

N 2 n+1
(5.5) A ô r = ~~ 

‘
~
‘

[(n+1) (~~ ) +n ]  AT 5

whe re according to (4. 20):

AT 5 = p5 T5 , p5 = l - e~~~

Fo rmula (5.2) gives an “e~~ct” value of the downward cont inuation error for

- Formula (5. 5) is an approximation.

6. The Error of Grav ity Anoma lies

The gravity anomalies are related to the grav ity disturbances by:

—35— 
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Ag = -

In- the same way we obtain -for the errors of downward continuation:

or

ôAg 5 = A 5 - 26T 5

where- 6A .g is the error of Ag and 6 4g5 is its n-th harmonic. By inserting
(5~ 2) we obtain:

(6.1) öAg 5 = ~~! 8T 5 + 
~~ J’$ J’ s.4 (1.-~ P5 (coB 41) di’

and approximately from (5.4) for r =

A 2fl+1

(6.1’) öAg5 = .~ L5[(n_ 1)(-i) + n + 2 ]

This error is of the same order as A 5 .

The first pa rt of (6.1) is already expressed in terms of spherical
harmonics (see formulae 4.7 a-b) . The second term may be written:

r8
(6.2a) 2ii+1 J$ $ ~ ( r ) ~~’ P5 (cos 4)) di’ = 1. T E ~5. L~ 

+ a~

where

(6.2b) {
~: 

= 

~r
• Jr 5 ( r ) 5 + 1  

~~~~~~~ 
di’ 44

Assuming that ~s = gs (8 ,A) ( independent of r) we obtain :

H —3 6—
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c55
(6. 3a) {~~~

} = J ( r , r.) { _ }  do

where
0 , I f r �r ,

3b) J (r , r .) = r2 
{ ~ , If r < r. , n � 2

if r < r . , n = 2

For H = r, - r > 0  the last formula can be expanded Into the following series:

(6.3c) J(r , r,) = r fl - H2 + ...
The error of ~g is thus given by:

(6.4) 6Ag =~5 5’ [X ~~~. + ~~n. nil

where

A5. = •-i. [(n-i) i~. + 
~~~~~~ 1

In. = ÷ [(n-i) I~. + d5.)

or 
.

(6.5) {~~}= 2n+1 5$ !4 K ( r ~r.) {.... } do

where

0 If r � r ,

K( r , r.) = r { (n-i) - (n+2) tr./ii - i If r < r , , n~~2

(r./r)5- 1 
+ ~ en (r ./r) If r < r . ,  n = 2

—37—
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The last formula may be approximated by:

xft. R .
(6~.6) {L.} 

= G p0 $$ H {
~5.} d o

For one more term in the approxImation (6. 6) see Prop. 2 of the Appendix.
Formula- (6.6) can also be determined directly from the potential coeff icients
~~~. and ~~~~ using the boundary conditIon (2. 2):

{
~:} = - (

~~ 
+ -~) { -~~~

or

K ( r , r. ) = _ ( . ~~ + !.) I ( r , r.)

Inserting (4. 10) and noting that = - we finally obtain:

(6. 7) K ( r , r 4 =  (2a+1)H [1 + (n-1)(n+21 
~~~~~~~~~~~~~

where the first term of K Is the same as in (6.6) . In Table 6.1 it is shown that
(6. 6) is a good approx imation of (6.5).

Tab le 6. 1

Comparison between H = 27 km and K (r , R)

for R=63 84 km, r = R - H

n 
- 

K(r , R) [kml Difference (ml Ret . diff. %

10 27.00877 — 8. 77 0.03

20 27.03394 - 33. 94 0.13

50 27.20732 —207. 3 0e77

100 27.82721 —827 . 2 3. 06
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In formulae (6. 3 a-b) and (6.6) we have assumed a spherical earth with
topography, where the only contribution to the coeffic ients A5. and ~~~ are given
by the topography. We may also Include the effect of the earth ’s elliptic ity. In
that case pK(r , r.) of (6. 5) 18 replaced by (see Figure 4. 3) :

Mo K ( r , rb) + M w K (r b , r .)

• where r~, is the radius of the ocean bottom and:

0 if rb~~~r .

i~ (r b , r.) = r { (n-i) - (n+2) (r ./r -(r ,4~f~~~ ;<r .

(r. /r)5- (;/ r)5 
+ 4 ~n (r i/rb) 

r1

In this case we arrive at the following approximate formula corresp onding to (6.6) :

A5. R5.
(6. 6 ) = F (H, H b) {

~~
} d a

where

F(H , H b) = M w H + (Mo M w) H b

- 
- 

H If continent 
-

Hb = { 0 If ocean with r > rb
rb - r otherwise

Howeve r , in the next section it is shown that formula (6.6 ’) is not very useful for
our porposv ~ determine the downwa rd extension error to the surface of the earth.
It seems more conven ient to use a modification of (6.6) (ef. sectIon 4. 2].
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6.1 Effect of Elliptic ity

The error of ~ g due to the Improper downward continuation to the
surface of a -homogeneous ellipsoid can be estimated In the same way as the
error of V In section 4.-2. In this case, we obtain for an arbitrary point
P (~ o) on the ellIpsoid .

(6.8) 6Ag (N) = ’5~ ~~~~ (cosøo)

where

Anc) = ke 2 
$ (cos2 O o - cos2 6) 

~~
,, (cos 9) sin 9 d 9

9°

and

k = GPo i~ R

For O o = 0 the last formula is easily integrated (Cf. section 4.2) and the result is:

I —

A 50 = 4ke2 {_ _ L  n = 2
3v’~
0 othe rw ise

For p0 = 2.67 g/cm3, R = 637~ km and e2 
= 0.0067 we have ~~ following numerical

values of the error coeffic ients:

Aoo = 3. 188 gal. and A50 = — 1.42 5 gal.

Insert ing these coeff ic ients into (6. 8) we arrive at:

6Ag (N) =~~ A.0~~5 ( 1 ) = o , N �2
n=0 

- - - 

-____
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Thus the re is no error at the poles. For an arbitrary point P( 9 0) we obtain from
Propos ition 3 of the Appendix:

6 — 2 2 M(M+ 1) r l~-l~-a ______(6.9) Ag (N) — ke 
2M+i L 2M-1 ~~~~ - 2M+3

where

1 N if N ls odd
M = 

~i. N+l if N is even

From (6.9) it follows that 6Ag (N) is decreas ing towards zero for inc reas ing N,
because:

B - 0  when N - ~~

For low order expansions it is shown in FIgure 6. 1 that the “errors”
according to (6.9) are considerable. For example , the maximum error for
N = 16 is 83 mgai. Again, it should be empha sized that these values are the
deviations of the external serie s from the true ser ies at the sphere of computa-
tion (Cf. section 4. 2). When N appro aches infinity the sums of these two series
are identical for exterior points . Thus the external series is indeed convergent
and is a correct representation all the way down to the surface of a homogeneous

- j ellipsoid. The same holds for a level ellipsoid . Hence , if we antic ipate the
mean earth ellipsoid as a level ellipsoid , the only contribution to the downward
continuation error of ~~g to the earth is given by the topography . The error
coefficients A ,,~ and B51 are then computed from formula (6. 5) or (6. 6) with
the modification (Cf. section 4. 2):

1 r1 if r < r 1
r = t  if r �r 1

r 1 = R .J(l_ea)/(i _ ea sina e)

Fo~rmula (6. 6’) should be used if the spherical harmonic expansion that Is val id
o~ ~he entire sphere of computation is required .
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6. 2 Global RMS Errors

The total error of ~ g for a truncated series of spherical harmonics Is:

• E~~ (N) = 6 Ag (N) + e~~ (N)

• where 6 Ag (N) is the error for the continuation and e~~ (N) Is the truncaticn
error. The global RMS of E~~ (N) is:

(6.10) tl E~ (N) II = [ I~6~ g (N)~I2 + IIe~~(N) I I~ j~

At sea level we have :

~~~

‘ 

c7~~(Ag)
N+1

or , for

ro

(6. 11) I I e~ (N) 112 = ~5’ (
n_ 1)~a a

N f l

where C~ are the disturbing potential degree variances.

From (6. 1’) and (4. 20) we finally obtain the app rox imate formula : - -

(6.12) II6~g(N)iI2 = —

~~~~ ~ 
[(n_l) (. L~~

”+ n + 2 J 2  p ,~ a,~

where

p5 = 1 - e~~~ , a =  0.03
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The formulae (6. 10) - (6. 12) are shown in Figure 6.2 for the degree variances
of Tachernlng and Rapp (1974) . In this figure we also depict the corresponding
RMS errors for 5°x 50 block mean anomalies, which are obtained by mu1tipl~1ng
each degree variance of formulae (6. 10) - (6. 12) by the smoothing factor $n
~see section A. 3 of the Appendix or MeIss i , 1971).

- 
~
- 7. The Error of Vertical Grad ients of Gray~y

The error of the vertical gradient of gravi ty is given by the derivative
of 6 Ag with respect to r:

(7.1) ôg,~~ 6 & ~~~~ _ 6A g = ’
~
’

-~ . 6A g f l

From formula (6. 1) we obtain:

( 7.2)

where AT 5 is given in formu la (4. 17b) . The derivative of AT 5 with resp ect to
r is (cf. Propos ition 1, Appendix):

Using the approximation I~ = Mo = constant, the last integral vanishes for n # 0.
Thus we have :

T5 -~~~T5 , n~~ 0 -

r

Furthermore, we obtain from (5.2):

r r
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Inserting these derivatives into (7. 2) we arrive at the follow ing fornmla :

7 3 6 = - (n-1)(n+2)6T~

This relation is the same as the relation between the spherical harmonics
(
~~ 

‘
~ and T5 themselves In the external case. Thus we have :

6~~~g5 - - -

______ 6T(7 4) a~ g5 =

ar

The error of the vertic al gradient of gravi ty can also be estimated from (7. 1),
(6. 4) , (6. 5) and (6. 7). From (6.4) we obtain :

ôg~. = [C~ ~~~~i, + ~~ fl.i
5..

whe re

— a —C5, ~ A ,,

— a —

Using the approximations (6. 5) and (6. 7) we arrive at:

(2n+1) [H + (n-1)(n+2) 
•. . ]  = (2n+1) [_i - (n-1)(n+2) 

(f ~ )
2

- 

- so that (for (n , m) # (0 ,0)]:

- 
Gp0 (n-1)(n+2) 

•J~$ H3 d ~LD , III ) 2?

Comparing this formula with (4. 11) we finally obtain:

-- —-74 - -  - ‘ 4-— — — -—~~~~ — - _ -__ -_—~~~~~~
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This formula Is equ ivalent with (7. 3).

8. ComputatIo ns with 5°x 5° Mean Elevations

1654 mean elevation blocks were used to compute the downward
continuation errors In a spheric al harmonic expansion of the disturbing potent ial
and the gravity anomaly. Lu all computations , the density of mass ( P o )  was set
to 2 .67 g/cm3. The spherical harmonic series were expanded to degree 16 (if
not specified).

8.1 Computations for a Spherical Mean Ea rth

In the first set of computations we assumed a spherical mean earth
with radius r = 6371 km. The downward continuation error for each harmonic
of the disturbing potential and grav ity anomaly can then be written accord ing to
formulae (4.11) and (6. 6) respectIvely:

(8.1) {
~:} = ~ JJ H~ da

and

A5. R5.
- 

~

- (8.2) {
~~

} = ~ p0 j $ H d a

where

~ r. — r  If r. > r

~ 
0 otherwIse

The computed error coeffic ients are shown in Tables A.1 - A.2. From these
coeffic ients the errors of V and Ag were computed from:

-~~~ (8.3) o v = ~ç ~
5=0 . 0
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and -
-

16 s

(8.4) ô~~g = V V [A . Rn (9 ,A) + B,,. S,,, (9, A) J 7- -

5=0 .=O

The only area with any significant errors Ô V/y was south of the Himalayas. In - - 
-

order to estimate the errors at the surfa ce of the earth in this area , a second
computation was performed with r = 6374 km. Then the erro rs were interpolated
between the computations with r = 6371 km and r = 6374 kin. The maximum error
estimate did not exceed half a meter.

The errors of the gravity anomalies were in the same order as the
anomalie s themselves ( Fig. 8. 1). These surprisingly large errors are not in
agreement with the empirical results obtained through a direct comparison of
satellite derived spherical harmo nic expans ions with terrestrial grav ity anomalies.
We conclude that the approx imation of the mean earth w ith a sphere is too rough
for estimating the anomaly errors.

40 -

60 120 ISO 240 300
x

Figure 8.1. The downward continuatio n error of Ag along two profiles
at sea level using formulae (8.2) and (8.4) . Degree of
truncation: 16.
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8.2 Computations for an Ellipsoidal Mean Earth

We antic ipated an ellipsoidal mean earth w ith the follow ing parameters ;

a = 6378140 km 
—

f = 1/298.257

The integration of the error coeffic ients for 6 V and 6 Ag was performed accord ing
to formulae (4.lla) and (6 .6) :

a5, G R,,.
(8.5) {

~ 
} j  [( Po- ’ Pw) Hi,2 

+ P w  H 21{ } d O ~

and 

—An,,
(8 .6)  = G $$ [(Po-P) Hb + P w  H ] {~~~ } d c 7

where Po = 2.67 g/cm3 and Pw = 1.03 g/cm3.

The computed coeffic ients ~ , ~~ ~~~~~~ A oo ,  and A 20 agreed very
well with those dete rm ined in sections 4.2 and 6. 1. The downward cont inuation
“errors ” for two profiles are shown in Figures 8.2  and 8.3. It was found that the
geoidal undulation errors were small (less than a meter) while the gravity anomalies
deviated up to 70 mgal in an expansio n to degree 16 (cf. sections 4.2 and 6. 1). The
results are not in agreement with the empi r ical knowledge of the errors of down-
ward continuation .

8.3  Computations for a Level Ellipsoid with Topography

In this section we make use of a mean eart h level ell ipsoid with the
same dimension s as the ellipsoid of the previous section . For a level ell ipsoid
there ~~ . no contr ibution to the downward cont inuation error to the surface. We
could therefore use the formulae (8.1) - (8.4) wIth the modif ication :

r • if r, > r
(8.7) r = {  r if r. � r
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FIgure 8.2. The spherical harmonic expansion of 6V/~2.5 — - to degree 16 according to fornmla. (8.5) andp (8.3). r 6360 km.
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Figure 8.3. The spherical harmonic expansion of ó~~g according to formulae

(8.6) and (8.4) . N 16, r 6360 km.
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Ft~ &re 8.6. Downward continuation errors -

- 

~~.2h (8. 4~ and~~ .7). N~~ i6. 
- — — ~k=~675°,r=636Okm

........ 4~ —I2.5~r 6377 km
‘—‘ 1 5 -
o

E . .5 r : : . :: 9~ 
.•.

-1’ \Hp~~~\~i

H I 
- 

I
60 120 180 240 300

x -

Figure 8.7. Downward continuation errors IT= 24 -

for ~g at sea level along the
parallel circle ~ — 12~5, — —— —— — N I 6 -

6377.15 km.
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where

= a l/ (l_ e2)/ (l_ e2 8in2 9)

For r = aIi ? (at the poles), these compi lations are Identic al w ith those given
in section 8.1. In Tables A. 3 - A. 4, we give the error coeff Ic ients for r = 6371 km.
In Figure 8.4, we show the degree varia nces ( a )  of the potential coeffic ients as
defined by:

(8.8) c~~= ( r )
2
~~~~~(~~~2 +

.~~
,.
2

)

In Figure 8.5 the accumulated RMS errors of the geoidal undulations to degree
N .~~ = 16 are shown. These erro rs do not exceed 0.13 m.

The downwa rd continuat ion errors of the grav ity anomalies in an
expans ion to degree 16 are dep icted in Figure 8.6 along two latitudes at sea level.
In Figu re 8.7 , the expans ions to N = 16 and N = 24 are compared for a profile .
Large error estimate s are obtaine d at the edges of the continents. Otherwise ,
the errors are with in ±5 mgal.

9. C onclusions and Final Remarks

In this report we have investigated the downward continuation errors
for spherical harmonic expansions of the gravity field of the earth. The simple
model In section 3 showed that these errors are inc reasing with the height of the
surrounding topography above the computation point. Furthermore, the relative
errors are increasing with the degree of truncation of the series. It is also
shown that the usual relation between the spherical harmonics of gravity anomalies
and distu rbing potentials is not val id for the errors of downward continuation :

(9. 1) ô Ag,,~~ ~~1 6T ,, -

The errors of Ag,, are usuall y more serious than would be the case if
this relation were true. One reason for this is that while the potent ial is dependent
only upon the distance to the generating masses, the influence on the gravity
anomalie s from masses located above the computation point usually has opposite
sign to that obta ined in the downward contInuation procedure. Thus, the relative
errors of the gravity spherical harmonics are more than 100% in the model of
section 3, where the only contribu t ion to the anomaly Is the disturbing mass out—
side the main sphere.
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For the error of the vertical gradient of grav ity ( 6 g,.), the follow ing
formula was found for the model:

(9.2) ( 6 gr ),, = — L~— 1 l1+2) 
ÔT ,, 

- 

- 

-

which is the same as the relation between the harmonic s themselves.

Some general global RMS errors were estimated based on Tschern ing/
Rapp’s degree variances. In the low order expansions (N = 30) the erro rs of
geoida l undu lations are 2.2 dm in the most optimistic estimate ~a = 0.03) while
the RMS errors of gravity anomalies reac h 16 mgal. These error estimate s of
the gravity anomalies seem too large, which might be due to the uncerta inty in
the basic approximation (4. 17a) .

Formulae were developed for a numerical integrat ion of the downward
continuation errors [formul ae (8.1) through (8. 7)]. Formulae (9.1) and (9.2)
were found to be val id also for the real earth .

In sections 4. 2 and 6.1 formulae (8.1) and (8.2) were tested at the
surface of a homogeneous ellipsoid. The calculations showed that the “error ”
coeffic ients of degree 0 , 2 and 4 were conside rable . However , the errors
6v (N) and öAg(N) were attenu ating with N to zero for N approaching infin ity.
The reason for this strange result is the follow ing. Inside the minimum sphere,
the po~ ntial of a homogeneous ellipsoid may be represented by two different
spherical harmonic series: one which Is convergent on the entire sphere of
computation (also ins ide the ellipsoid) and one which is valid only outside the
surface of matter. The latter is identical w ith the expans ion outs ide the bounding
sphere . As w~ are only interested in the errors on and outside the surface, we
are looking for the downward continuation error of the latter development , while
formulae (8.1) and (8.2) give the errors relative to the first series.

It was therefore suggested that formulae (8. 1) and (8.2) should be
modified (when applied to the real earth) in such a way that the re are no con-
tributions to the downward extension errors from the masses of the mean earth
ellipsoid (level ell ipso id) . This modification [formula (8. 7)1 implies that the
errors of the spherical harmonic expans ions are merely due to the topographical
masses above the sphere of computation .

In the final compilations with 1654 5°x 5
0 mean elevat ions (sectIon 8.3)

we arrived at very small errors of the geoidal undulation s (RMS error = 0. 13 m
for N = 16). The degree variances of V were found to have a maximum 38 x 10_b

for n = 6 and r = 6356.73 km (at the poles).
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Finally, we conclude that the gravity anomaly errors seem generally
to be wIthin ±5 mgal. However, at the edges of the continents and within rough
areas on the continents , larger errors might be expected. Such areas may be
studied in detail by utillzii~ the method descr ibed in section 8. 3.
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Appendix AA -

A. 1 Computation of “Minimum Sphere ” Radius -

The radius of the “minimum_sphere ” is computed as the maximum
sum of the radius at sea level b//i_e200s2 

~p ,  the height of the topography (h)
and the geoldal undulation N:

-
; R = maximum earth (Rh) 

-

where -

Rh = b/JTI~ e~cos~~~ + h + N

b = a fj. - e2

a = 6378. 140 km I

e3 
= 6.694407 x iO~~ (f = 1/298.257) -

The maximum was obtained for Mount Chimbo razo in South America (~ = - 1.45° ), - -
with:

R h = 6378.126 + 6.267 + 0.010 = 6384.403 km

I

I
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A~~endix A.2

A. 2 DerivatIon of Some Formulae

Propos ition 1:

(A.1) A~ = — 1  6v~r

where -
OV ~ = I ~~ P~ (cos ~ ) d V

d v =  r j2 dr~~d O

implies

A~ = ~ 5J’ 5 ~ 
[~n+i~(.~i)~ + n (L) J P~ (cos l~b ) d L J

Proof: We rewrite ôV~ in the following way:

(A.2) = K(r , r5) P1 (cos &b ) d a

where

(A.3) K(r , r ,) = k ( r , r~) dr 1

-
t 

and

k (r , r i) = a!L 
[

(.!L)~ - ( r )
n41 1

Thus we obtain:

(A.4) ~~~K ( r , r .) = S~~~~k(r , r l)dr j - k ( r , r)
r
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where

(A.5) k ( r , r )= 0

and

(A. 6) ~ - k (r , r1) = 
~~

. [~n+i~ (.!4 + n (L )D+1

]

By combining (A. 1) through (A. 6) we arrive at the proposition.

PropositIon 2:

0 if r � r ,

Given: K(r , r .) = r { (n-i) (r ./r)’~~-1 
_ (fl~2) (r ~/r) -1 

, ~~ r < r,

+ 4 2n (r , /r) if r < r, n = 2

K (r , r ,) can be expanded Into the following series :

(A.7) K ( r .rs) (2n+1)H [1 + (n-1 (n+2) (iL~~+ 1

where

0 if r �r .
H = { r, - r other wise

Proof: n # 2 :

(ray ~
+3 

~. + fl+~ + (n+3)(n+2) (IL )
~
+ (n+3)~n+~)(n+~) (ILI+ ..~

f r. ç (’~a) 
= 1 — (n—2 ) Ii + ( n—2)(n— 1) ( H ~~ (n— 2)(n—1) n (iLi~ + ...

~~r )  r 2 \ r I  2*3 r /
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Hence

K (r , r.) = r [(n_i) { IL + 11 ) 2+ (n+2Xn+1i 
(

.11. 
)

3
÷ •}

-(n+2) {_ .
~ 

+ .~~!. ~~~ ~~~~~ (iL5 + ...}] =

(2n+1) H [1+ ~~-1)(n+2) ( H )
2 

...]

n 2 :

(~.t 5 = i + s i!+ .y i (ILj a + ~~~~~~~~~~~~ (IL)~ + ...

~n (r ./r) 111  ( + .}( i i ’j _ ...

Hence

K (r , r~) = r [
~~

+ 2(IL ) + 2 (Ji)2+ ... ÷ 4{~~~- f (~
-
~

+ ~~(iL~~- ...}]

= 5 H [ 1 + f ( i L )
2

+ . . .J

This formula satisfies (A. 7) for n = 2.

Proposition 3:

(A.8) 6Ag(N) = ‘5~ A1 P1 (to)
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where

to
(A.9) ~~~~

= $ (t — t 2)~~, ( t ) dt
-to

Implies

6 Ag(N) = 2 M~M+1) r ‘~~-‘~ -~ ~~~~~ - 
PM+a-Bs l:~i~i2M+1 L 2M- 1 2M+3

where

P., = B, (to)

and

( - N  I f N l s odd
M = ~~‘~ N+1 if N Is even

Proof: We have :

to N

6Ag(N) — $ ( ~~~_ t 2
) ~~ P~ (t) P~ (to) d t

-t0

From Churchifi (1963, p. 214), we obtain :

(A.iO) ‘
~~P~(t) Pn(to) ~~ (2fl+1) P~(t) P~(to) (N+1)

Thus we arrive at:

to
6~ g~~~ = (N+1) $ ( to +t)  [Bd+l(to)Bi(t) - Bi+i (t) B~(to)] d t

-to
to 

44$ It P,+i (to) Bi(t)-to PN+i (t) Bi(to)J d t , N = odd
= 2(N+1)x{~~

J (toB~+i (to)B(t)-tP.,+i(t)PI (to)Jdt , N=even

L _  _  

°
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In the last derivation we have used the fact that p~ is odd if N is odd and even
if N is even.

We use the following substitution (see Churchill , 1963, p. 206):

(A.ii) t P~(t) = 
2N+1 [(N+1) B~+ 1(t)  + N B,_ 1(t)]

Then we obtain for odd N:

to
(A.12) 6Ag(N) = 2 (N+1)N 

S [Bl+l(to) PN_j (t) P~+1(t)PN_ 1(t0)I d t

= 2 (~~~1)N r PN-B~-2 ~~ - 
PN+~~-Th~

2N+1 L 2N— 1 2N+3 1

where we have used the abbreviation :

(A. 12) was obtain ed by the follow ing relaUons from Churchill (1963, p. 207) :

(A. 13) (2n+i ) 5 Pa (t ) d t = P~41 (t) — P~_ 1( t)

and

P~k ÷j (O) = 0

For N even we obtain In the same way :

6 ~g (N) = 2 (N+1)(N+2) [B -PN-l p~~ - 
B + i
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Propos Itlon 4:

to
Ô V(N) = 5 ( t —  t2)2~~’ (2n+1) P1(t) P~(to) d t

n 0

implies

O V ( N ) = t  g.,(t)

where

t — 2 M(M -f 1) r B.,(t)— P .,_ a (t ) ~ __________
~~ ~ 

— 

2M+1 L 2M—1 ~~~~~~~~ (to) 
2M+3 B’I-l (to)

N i f N i s odd
M = {

N+1 if N Is even

and

o ts;
~~~to

Proof: From the derivation of Prop. 3, we obtain (for odd N):

to
(A.14) OV (N) = 5 (ta~ — t2 ) ~~(t) d t

where

g
~ 

= 2 [l~+i (t0) B~-1 (t) - l~+i (t) P~-~ (to) I

Integrating (A. 14) by parts , we obtain :

to
6V(N) = ((t€~— t2) g~10 + 2 tg ., (t) d t

~ 
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The first term Is zero because gN (0) = 0 and for the second term we may
use the mean value theorem of Integral calculus (Bartle, 1964, p. 303).
The result is:

t o
(A.15) O V ( N ) = 2 J ’  t g . , ( t ) d t = g . ,(t) t

where

o- ~i~~t0

In the same way the propositi on is proved for even N.

Corollary 4: t o = i~~ ÔV (N) = 0  for N~~ 4.

Proof: We may integrate the first part of (A. 15) one more tIme by parts .
Then we obtain :

to
ÔV (N )  = 2 to G., (to) — 2 5 G., (t) d t

where

G., (t) = 5 gN (t) d t

From the expressio n for g., in Prop osItio n 4 and (A. 13) it follows that:

gN(1) = G.,(1) = G N (t) dt = 0 for N~~ 4

which implies

Ô V ( N ) = 0  for t 0 = 1
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Appendix A.3

A. 3 Estimates of the Optimu m Degree of Expansion from Surface Mean Anomalies

We assume that we have a complete coverage of mean gravity
anomalies ( Ag) over blocks of size 9° x 9° on the mean earth sphere. As
we have a finite set of mean anomalies, this mean gravity field can always
be expanded into a finite series of spher ical harmonics. If the number of
coefficients (k) equals the immber of mean anomalies (L) there is a unique
set of coeffic ients A ., B1. that satisfies all equations:

(A.i6) ~~~~ = ~ i~ 5$ (A11 cosmX+ B11 s in mA) ~ 11(sIn~~) d a
-~~ —.~ a1

n 0  ~~~O

where

i = 1, 2, ..., L

N = degree of truncation

= the area of the lth block

These coeff icients can therefore be determined by solving a regular matrix
equation, and the solution will give the exact mean value over each block.

Theoretically we are not limited to L= k coeffic ients In order to
obtain a solution that fits all ~~~~~~~ If k > £ (more coeffIc ients than observa-
tions) the solution is not unique. One solution is thus obtained by using
condition adjustment:

YA = - A = Y’ (YY’ )~
‘ 

~~

where

A = vector of unknown coefficIents r -

= vector of spherical harmonics ( integrated over each block)

= vector of mean anomalies

Tints there are different sets of coefficients that satisfy the observ ations and
there Is no evidence that one set is superior to another.
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In a different approach we expand £~ into a complete set of spherical
harmonics:

(A.i7) = (a • cosmA + b~. sinmA) ~~ ( sinø)

-!

where
cosmA —• 

{b ,.}=  
~~ $$~~ {sin m~~}P n (8h

~~~~
(1C

~

If this series is truncated it will not be comple te and will not satisfy the observed
mean anomalies. This tendency has been verified by Bapp (1977 , p. 42). Thus
the commonly used rule of the optimum degree of truncat ion:

— 180°(A.18) N optimum —

~~

•

~~

-

where 90 is the block size, does not hold for mean anomalies.

We may then ask whether (A. 18) is valid for estimating point anomalies
( Ag). We assume that ~g may be expanded into a convergent series at each
point of the mean earth sphere:

(A. 19) Ag

where

~~~~ .L (C1. cosmA + L. sinmA) ~~~. (sin 4~)

The smoothed field (A. 17) is then related to ~ g according to:

(A. 20) ~~ (x) = 5$ B (x.y) ~g (y) d a7 =5’ A g1(x) fl1
a

where B (x.y) Is the integra l ke rn el of the smoothing operator and $~ are its
eigen values.
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Assuming that each block has the same size as a circular disk of
spherical radius:

*0 = (6 s1fl9/rt )*
p

we obtain from Meissi (1971) :

- 
1 x .y�cos~~0

B (x.y) = { 2n 1-cos*o
0 otherwise

and

— 1 P~ 1(cos~~)—p~ 1(costh0)
~ 1—coa~ 0 2n+1

Comparing (A. 17), (A. 19) and (A. 20) we obtain:

(A.21) {
~:} 

= 

~~ 
{:}

Thus the correct spherical harmonic coeffic ients of ~g are given by the
coefficients of the mean anomalies divided by fl~. Theoretically this
estimate of Ag Is Improved for each add itional coefficient Included in the
series (A. 19) . However , the estimates of the coefficients accord ing to
(A.21) are poor for higher degree s, because $1 approaches zero . Thus we
have in practice to limit ourselves to a finite numbe r of coeffic ients .

Let us now assu me that we estimate Ag by a truncate d form of (A.20):

The error of this estimate is then given by:

1 0  ~~ N+i
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As the spherical harmonics of different degrees are orthogonal to each
other , we obtain the following global RMS error:

or

(A.22) II~~-~ gll=[~~a - ~~a $1 2 - $ 1 ]

where

a~~=~~L 5 J Ag~~d a

We define Noptimum as the value of N that provides the minimum
RMS erro r of A~ [fo rmula (A. 22)J . In Figure A. 1, Noptimum is given as
a function of the block size 9° x 9° . The computations are based on the
degree variances (~~ ) of Tscherning and Rapp (1974). The diagram clearly
shows that the optimum degree of tru ncation is highe r than is indicated by
the rule (A.18).

Finally, we conclude that if the coeffic ients of (A. 16) are solved from
a system of linear equatio ns, there is one uniq ue solution of this system if
the numbe r of equations (L)  equals the numbe r of coefficients (k) . If k > L
the solution is not unlque .We may not conclude that one set of coefficients
is generally superior to another set.

If the spherical harmonic expans ion is solved by integration , the
solution will converge to the original mean anomalies for an infinite number
of coefficients . Comparing a trunc ated form of this serie s with point
anomalies we arrive at the conclusion that the optimum degree of trunc ation
is higher than the rule of thumb (A. 18).

-69- 

-~~~~- -- --‘--44-- -- -~~~~—



-- 

~~~~~~~~~~~ ii T~~~~

44. 

. 

I
I
I
I

- I I £

0)

I .
~~~~~~~~~~~

I
.2 1

44 

/
a
E

k O ~~~ I
/ ~~.0

- I ~~

/ ~l
~~i /

/

• 6~~
’

- 

—

— —

4:

Iii — . - - -‘ -  . —-~~-

o 44 0
0 U)

NOIIVDNflèJI JO 3~èI93G V~iflV~iIidO
—70-

______________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



- ‘ ‘
~~~“~‘ ‘‘‘~~~~‘

‘‘‘ . 
- -1~~~~

- •
~~

’•’_ -

- - - -- --7 - --— ~~~~~~~~~~~~~~~~~~~~~~~ - -  - - — —-7-

iOk~~~~~~) 
~~~~~~~O’. i~~~~~~ 0~~t~~~~~ k~ ~~~~~~~~~~~~~ ~~~~~~~~ ©N*~~~~~~ **N..e1~. ~~~i~iei— ~~~~*— ~~~~ ~ ,

~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~ •~~e ~~~~~~~~I I I I  I I I  I 1 1 1 1 1  I I I  I I  I I I  I I I I

NO© ~~ C~~ ~~*C’Jt-~~N t-~~~~~’ ~~~~ V)~~~* C~~t-N ~~~~~~~*l~~t’.- N N~~~ C~~N~~~~ W t -  - N W~~~~~~~~~~ 0~~~~~NNNN- ~~~~—~~~~ NN ~~~ -N-’ N~~~~ NN ~~~-.~~~— — ~~ ~~— — c ~~~ c~i—oes • ~~~~ •—— e~~ — — —a I I  I I I I  I I I  I 1 1 1 1  I I I I  I I

~~~~~~~~ N*~~~~~ N ~~~~~~~~~~ C1$~~~~~~ N’f N*~~~~~~ G1~~ N i 0  ~~~~CI’~’ iO_. — — — — — — — — — — — — — —————— N C I N N C IN ~~~~~ N N c~ ‘~1*~~’~~’*~~~i V~IOI~ ‘O ’O iO ~~~~— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — _ — — — — — — — — U

~~—~~ ©‘.c’) F-I-o’ l ~~~ ‘c~~~-.—~~ G0~~~C~~~~~ * ~~~~~~~~~~~~Clc~ L~ iOt. •Nt-~D~~’ ~~~~~~~~~~~~ NNt-C1~~~~ — ~~~~~~~~~ ~~~~~~~~~~~~~~~~~ —- ~~~~‘ O~—el I~~’I’
— n — - — .  ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~ ~~~~~l i i i I I I I  I I I I I I  I I  I I I  I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~ ~~ E ~~~~~~
“-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ —
- o .~~~~~~~~~~~~~~~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~ —

I I 1 1 1 1 1 1  I I I I $ 1 1 1 1  I I  I I I

-‘Nw~t~~ ’— C~~ )t ’ G~~ t -0~~~~~N t~e . ’ c ~J Nl~t .G~~~NI~ .~~~ IO I-0~~~N I~— — — — — — — — — — — .~~ ~~

~~
.— — — — — — — * — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — .0

—

- -

g 9 ~~~~ ~~~~~~~~~~

~~ ~~ ~~~~ ~~~~ ~~~~~ ~~
. 

~~

o~~
4

— ~ ~~~~ ~~~ N . I ~ ~~~~~~~~ •~c’i,c~l ~~~~~~ 0 ~ 4:
c~ ~~* Nel ~~~~~~~~ -

~~~~~~ 
0~~~~~ G~~~~ ~~~~~~~~~~~ It

~ ~~~ N-i-’ — N -—  c~1ei~~—~~
a

N N Gil’ Gil ’ G1l”O Gi* i~~ N*~o~~ ci*~~~~ ~~~~~~~~~

N N ‘I’ l ~~~ ~D’D~O t-.t-t’. ~~~~~~

* 1’ t.e~ bCi .‘* N ~DO’ N i’~~~~ N ~‘G” -’NIt~ NF.C Q~~’I’ l’ •-~ —~~ •N~~~ Nt- •~~~ G N O~NN* k)l’~~ l’N ~~~~~~~~~
N —— CIC~ GiN -  C’i~~~ Ci • ‘ N  — -‘GiN— N C N~~ • O G i~~I I I  I I  I I  I I I  l i i i

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~•N~~~~~~~~~~~~~~~~~~~~ N*NNl’N~~~~ ’~~’O’~ •c~~~~~~~~~~~~~~~~~~~~~ iCi—N
44 ~~~~~~~~~~~~~~~ •‘•‘••••—•••••-~•••••1 1 1 1 1 1  I I I I I I I I I I 1 1 1 1 1

-. — -~N ‘-‘N C~~ N~~ ‘N~~ I’. -‘ømt . )~~t-0’ ‘NIt ) t-~~
~~~ . N G i N N N $ l’ N t”t’~~~

.t’ . ~~~~~~~~~~~~~~~~~~~~~~~~

—71—



-- - ---—--‘- -- ------ --- -~

-.44 .~,-.~~~~ --w yç ~
_
~._— — —— — ~~~~~~~~~~~~~~~~~~~~

- -

*—CiP ~ c ~oON~~ It)l’ “GiN4’NN CQ~~~~ N~c *—co ei-Nim It~t ’ t ’. It~ *N~~’*N-’~~~ 1’.CP ’. -’~~l’ P.cD ø’. ~~~~~~~~NI0l’ ~~N-’ N ONN
— O Q C C I  0Gi000 NNCI—C ’ i l’ NG1 —’~~~~—’ —’ Ci Gi —’ C ’l©Ci — —‘*~~ N~~N — ~~I I I  1 1 1 1  I 1 1 1 1 1  I I I  I I  I I I  I I I I

~ ‘~~~~~ipt~. C’0’~CN .’I f ,  C~’-~oc~o~ N~- N NOa . N ~ *a~ N — *  L~ NI*~ — C 1  - -~ -NNQ0”~a *-~~~G1t-* -‘CO’ It~ v~N N O N © l ’N —  OO~~t -OIe)l’ *eO~ D O N l ’ G I
NCI *CCI — — i ~GO~~ t — G — ’N Q N  ©~~~~*N~~G — ‘C~3— ’ —’ — — ~~ It~GICI •-‘G’—~~I I  I I I  I I I I I  I I  1 1 1 1  I I  I I I  I I

N *i~~NO N*~~ NNN Nl’~~ N~~ Ci Gll’i~~N~~ Nl’ G1l’ ~~~~ Cø~~~~Gil’ N*’O
=4 _ =4 =4 =4 =4 =4 =, =4 =4 _ =4 — =4

~~~~~~~~~~~-‘ NCIGiNNC’1 NNNNNN l’ * * * *l’4  ~~~~~~~~ )$O I~~It) It) ~~~~~~~~~ 
iO~~~~~~~~.Q~~O— — — — — _ _ — _ — _ — * =4 * — * * * =4 — * — _ — — _ _ — — _ * =4 * =4 ~~ * — *

G t ’.ONo— t’ ONI t ~G1N N**Nt ’..D * N~~~~o”-’Ci o l’~~~~o~~t -NN 0~NN N - N ~~O’ Uoc~ u o ~~~, 1’.-.. o — N N —  It~~~ *N V — — N  — N c O — N — c ’ j  N~~~~ NNc” —~o ei It~ N G i ’ ” ’ N  — -: -
*40.’*I.C’l 1’.l’--”l’N N~~~~~~iN N ~~ G1 Cl*—’NQi * N O ~~~~~G1~~ ~ ‘CI ’ C1C’iG NCI
1 1 1 $  I 1 1 1 1  I I I I I  I I  I I I  I 2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ©t~.N ’-’Ni ~~4’-’l’t-It) i~ CIt)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ t’.NI .~l— .”Ci N ~~~~~~~~~ — E

~~~~~~~~~~~~~~~~~~~~ OO~~~ ’C~ 
N

I I I I I I  I I I  I I I I  I I  I I I  1 1 1 1  I I ~~~
—‘NIt~t— o’ — - cn,t-o.— —N1 ) t — o ’—N —.NILf l ’.a~— ’N NI0 t~~0”-’N I~) NW ~ I.0’ N N

=4 -4 — * _4 _, _ =4 _ -4 _ — 0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~

~~

•~ o~~~

14

t-. N I’.N GI G’ ~~G.* It~ It) L’~ l’-’G% ’.~ ~~~ l’-’ L’~ ’.~~~~Nl ’  ~~ .~N N N It) O. ~~CN I’. CIGI ‘.~~C’)~— - G ’ Q— 0 *N*N~~ m —N ~~~~~~~~~~~~~P. ø~ — ‘N t~. —. ‘.c —’ G~ 0— ’ N~~ NN —‘ NNCI N~D~~ C~~I R’
— ‘T1  I I  I I I  ~~I I I I I

N 0C3 ~~I0 a’Q’C) Lt)Ne~1 L) t.’-’l’ ~“ .o’.~~O Ir~~~~~~~~ s
— t- O’ c’.~c Na.c) NP-N ~~NNt- NO*’ .~ ~~~~Q~~ t0

N N ‘.DL’ O’.NIt) I~~l’It) t-NCIN NOGIP. NN’ .—C~lI . ’  -‘I  — I I i i  I I I  I I I  4:

N N Gil’ Gil’ Gil”.oN

N N l’* 01) ‘.C~O.O P -P-P. NN~~N
=4 — =4 —

I. o *c’ ~~P. N oN I—ON 0*N P. ~) GI’I~ C’) N I~~Nl’l ’  ) N C ~ t ..4
• ~ CiD •~i •Q0 *~~ CI “N * N~~~~ 0 NN1)1)*
0 1.. •* -‘N ~~N— — N I ’ •*N I’ -~-NN e*NP- Q 0l’N~ON

— =4— i~~~~ - ‘ I  I I “ I I  1 1 1 1
I I  I I

“NP. ON-N •NNNIQIt~ $’P~~ •P.N~~~~~~~~~~~ o’Nc0— ~~~~~N — — G .Gi ONN GiS NNO ~~~~~ I.e7 “‘0 N — C~ 1)G.It3
P. i~~~~~~ *P- *’ NN0N**Cl Nl’~~~*l’N*NPil’I0Ci*NGi.’NN0~~~ 1 1  I I  I - 4 I  I I I I I I 1 1 1 1 1

I I

E — -‘ — 0 -‘0 -‘NO — N o  —NO I-. - ‘NOt - - ‘N0t-a~ —0l, I~ o’
44 

m • “ 'NNNNNl’*l’ O1)O~~~~~ ’.Dt.t- I— t . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=4 =4 
_ — =4 —

-72—

-- - - - , - - - - - - - - - 44 -



~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Gi.o —’ — Cl 1)’ONNN—’ l’Ci~~ I-Nc — ‘NP.It )NC ’O ’ N * ’I-P-G’c. ON ’-’ •ioo©~~— o — o~~ ~4*~~ CiON NN-’~~~~’N - ‘N00000 O-’ O -’OOO CINN “O- ’N ’
00000 00 000 000000 0000000 0000000 000 00000

I I  l i i i  1 1 1 1 $  I I I  I I I I

1)~~CI *N l ’I - I -O1 ) Gi  l’Ol ’O” l’ N N I -N ” N O  0GI ’.~ a ’.NNI- ON-’ 0I-~~~~I’O ’.~ 1)O a~~ NOt -NO - ’  l-”1)N~~ N-’ GINØ’ .NO-’ I-*O~
N.~~~ -• -‘ “ NNO Ci- ’OO- . O 000—000 ‘-‘ — -‘0000 ‘-‘O 00000

I I I I I  I I I  I 1 1 1 1 $  I I I I  I I I

Gi *’.QNO Nl” OONN N*I~~N0N Cil” .~~NNCi * N*i000Ci l’ Nl” .~ N0NI’~C
=4 -4 =4-4 __ ,  =4 __ ,_ -4 -4 = 4——— ~~~~ G i G I G i N G i N  N N N C )N N  •****P* 1)1)1)1)001) ‘Q I’iO ~~~~~~~- 4 - 4 =,  _ _. -4—  =4 — — — -4— =4* — =4 = 4 = 4  =4 — — _ — _ __  -4 _ — * — =4 = 4  _ _ __  —r

l ’1)NGIOC N*NI-*t-  NOG ’. Ot-- ’.ø  t -N~~N~~ DI - 1) 0 1 ) 0 *— G I N  -‘-‘N *“ONt ’- U
‘.G~’.D iOON 0-00*0) 000*I -NGi t -o*N-.NN ON0000NO ONO ONNO - ’  ‘a

~~~~~~~ ~~~~~~ o~~.~— ow~~ ~~~ -o  ~~~~~~~~~ o~~~ —-‘o~~o 0 .~~
1 1 1 1  I I I I  I I I I  I I I  I I I  I I I  I

•NI ’1)c 1)”'I- N O N o o l’t - l ’0 N G ’— 0 a~— N o o  1)0 01.0)00) 1) N P - N I - G ’  . —1) NGIGl 0N N 1)N O~~~~~~~~~~~~ ’NGi .~~~P. N -‘-. ‘-‘O - ’NOON -‘0000 -1 ~~ 
0 0000—0 000-’0000000000000000 00000000-’000 00000 U ~1 1 1 1 1 1  1 1 1 1 1  I I I  I I I  1 1 1 1  I I  I

00
~~~~~~~~~~~~

N1)I-G”-’ N1)P.0’-’ -‘01)P-G’.”C) ‘-‘C)1)I.O-’Q) ~‘Not-O-’C) O 01) P-0’-’N1) C. 0
, .~~~. , — — — ..a 0 ,

~ ~
— NNNCICINNC)NNNNNNC)***l’*I’ l ’*1) 1)1)1)1)1)1)1)1)0000 0 0 0— “ * “ — — “ “ — ‘ — — — ~~~~ “' — ‘ ‘ “' ~~~~~~ ~~~~~~ ‘ “' — ‘ “ — — — ‘ “  . ~~ .~~~ ~~

~~~~~

~~~~~~

~~~~I I ~~~~~~~~

014~~~4

14~~. . N
0 0  ~~~~~

N It) C)? NO’ “'1.1 NN N  —1.0- ’ —00.” 0*001’ .~I .~~ ~~• * ON CI —’ — O N  — N O — — G I N —00) 0 G I N — — N  ~~ II ~N ~~~~~~~~~~~~~~• N 00 0 000 000 0000 0000 00000 C)
I I I I  I I  I I I

1. — 00 -‘C) OL’)N 0*0) -“ Nt- O *CIN* OO*0IL0’ 0 001 $00 00-’ 0101- N-’N* ON ?”' ‘*011)0
-4 N t 1 ’  ON NN N — —  N — — N  GIN- ’ — N—0-’ N
I $ I I I I I  I I I  I I I  4:

0
N N NI ’ NI’ NI’0 01*0 N*0N NOON N*0N~~

CI N ** 1)1) 000 P-I-I- 0000 oooe’ oo.oo

0-’ 1-0 GiNO -‘ON I-N IL) — •C) N GI CI CI C)NN 1.0)0*1-1) 0 ON 00 OON N?— NON o’ 00)0)0 OONI-N 0—000’
N N N-’ 01 CR1- -‘•CI ‘ N  N NN~~~ -‘NN.w N ~~~~~~~~~I I I  I I  I I  I I I I  1 1 1 1

NONiO1) NN0*OI-4I-NNNNO’N*— 1)N00’0 00t--’t -P .O- ’00t-O01)NONOONS” ONN’O ’0 ’000N O N N O— N N O -’ 0 0 0 t - 0 0 0 0 0
I -“ 4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I 1 1 1 1 1 1  I I  I I  I I  I I I I I I

— -‘N *0) — N O  -‘NO -“ 011 1. — 0 ) 0 1 .  -‘0)01.0 - ‘N0P.O~

~ •~~~~C 1NNNNI ’l ’?0OOl1’OC0O t- t.t - t.  t -00000 00’o’o’G ’NNNNOO
— — = 4 - ’ - ’—



44 

,,. _ .  n, -.r ---,—, “ “~~~~ ~~~~~~~~~~ 
- - 

‘~~~‘

•OC’0I.) N— ’O.0I’* $ © N P - N — 0  0000)— ’OIt ) C ’I0—’ —’ C’INt-. * *“  ‘01)0
“N I-I C’  *Ot-*Ot- *I’oNe’l’ I~)t - 1)NO’N1. ‘D CI — ’N *t- O’ IL)0 O’N *

- 44 00000 “00”OC ’ ‘-NO Q” 0 — 0 0 0 0 0  @ 00000 “~ CI’~ 00-” -’I J I l l  1 1 1 1 $  1 1 1 1 1  I I I

N— ’ G O. N C’)NOG- —’ N OOGIN1.CI  000O’0 ’1)— ’ N 1 ) C O N N — ’C’ 0C’C’ 0*01-00-woo ? 0000’00* NC) *0G ’~Q 0 1 0 1 0 1 1 --N O  01)001)00 001. NN*I’N
-‘NGl GI 0OC)~~~00 1-*--N-” GI~~~~~-”0’ 0 *0)0101000 00”’ •~~ 0 - ’
I I I I  I I I  I I  I I  1 1 1 1  I I  I I I  I I

01*000 01*00001 GI *~oO 0 N  0I*I 000C’I* 01*00001* 01*0 0001*0
-4-4 _ — -4 

_ 
_ -4 — — _ — _ _

—‘ —‘ —‘ —‘ —‘ NC I N G I GI C’I 0)0)0)0)00) *l’***** 1)1)1)1)1)1)0 ‘.000 ‘00000— ~~ =4 =4 -4—  _ =4 =4 — * -4*  -4 w~ — ~ — — — — — “ — — * “ — — * — 

.
~~ 0J

C)Q’ CO t’~C)N *CCCOC ’ G” '’ C - C Q 0 1 tL)~~$ 01.0’N *I~~0 00’--’01-’1)N1) G’.C) ts. N N N* 1)  —4

•~~~~oooi ‘D~~~0~~ I”-’ 0C’~ 0Nt— IO —’ t -N N O C ) — 0  OG s l ’— N—— ’C) 0*1— • .—oo— 0 ,~ ,~
1.0*0100 l’0)0-”.~’0 ‘~~~ C)l’ ’-’ -’ C)0000) 0 *0)-.O GINNO 000 010)0-’-’ ~1 1 1 1  I I I I  I I I  I I  I I I I  I I I  I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C)000’.oC’IQN- ’ O3*1. -‘—1)0* ‘
~~

~~~~~~~~~~~~~~~~~*N-” t C 0 ) G I ~~
— — 0 G I — N 0 0 00’l 0 O — 0 0 0 — 0— 0 0 — o — N  0 0 0 —— 0 0 —*0 0 0  — 0 0 - ’ 0  14

I I I  I I  l i i i  I I  I I I I  I 1 1 1 1 1 1  I I  I

—‘0)1) 1—0’— ’ ~~0)1)1.0* —‘ N1) 1.0’— ’N —‘ C) IO l— G’.—’ C) —‘ N lL) t-0”'N IQ “' N IL) 1.0’ ’C) lL) 0
— -4 =4 — — - 4  - 4—  =4 — 0

‘ N C ’I N C l G I N 0) c 0)NC ) 0)~I’****?I’*o 1)1)01)1)I~)O 1)0 0 0 0  10~~~000 
•

01~~4
_ — _ - 4 — — —  _ =4 — _ -4 _ — =4 — =4 — _ -4 _ — _ =4 _ * * — -4  _ =4 WI ~~~~~~~-4 ~~ ~ 4 * — — — ~~ — ~~ — — _ _ _4

44 G ) 1 4  —0 0 ~~~

_ _ _  -~~~~~~~~~~~~~ —- -  - 0~~~— —

0) 0 1-4’ 01- 0)010 •C ’N 0) 010) 0  1)N *C1 F - 0 ’t ” I P -  ‘
~~ ~~ 

,
~~ C’l

0) 0’ 1.1)1) P~ C) C’1 “*1.0’ L)”O” C)P-P-

1- WI 00 0)0 ‘-‘00 00)0 001-’-’ ‘-‘C) -’0 ‘-‘-.0 0 ‘-‘ 
- -

I I I  I I I  I I  I I

0 0’ I’lL) 1— N 1)01) C.0* 0C’)C’N 00)00 ~~“ ' 1.014’ 0 o II
N — NO 0* *0* 1)0)1- ‘-0011) C C ’1NO 0)001*0-
“0 CI 0* 00 -‘O Wl 001* 000) 0 G’ N C) C) 0N” ON
i ’ ”  — ‘ ‘ ‘ I  — I I I I  I I I  I I I  

44

N Cl 01* Gil ’ 01*0 C’J*0 cl*oN 01*00 01*OO~~

N N *I’ 1)1) 0010 1.1-1- 0000 0000’. 00000
-4=,  _ -4 = 4

;- 0 0’ 011) ‘01— 0010 —‘*0 011-0 Cl 4*00 —~~l — P - a’. 0-1)00)1-
— 0 0* 0~~ NI’C1 **1) *I’O • 0101)01 0010)1)01 0O~ ’0’—’ IL)

I) C) -— 0~~ ~~-t’. 0)0)1-. 101- 0 4’ o~00)k) *NNI ’0 C)0)I ’*0)— — I I  I I  I I I I I  1 1 1 1

4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0 8111* 9 0 - 0’ -
O GO ’I - *C)*-’0*”' 0-’0*1-N—GI00- ’0 00000*0N_000t’.000”' 0

1 1 I I  I I I  I I I I I I I I  I

— — “0) —‘0) ‘‘No — N ~~ ‘—No 1. —Not ’.  ‘-‘0) 1) 1-0 — ‘0) 1) 1- 0 ’

~~ •‘“-‘GiClN.~)C) *l’l’1)1) 1) 1)00001.1.t-I- 1.000000O’0’O ’00000000
=4=4  _ _ =4 —

-74-

I— - - — - 4 4  
_ _ _- — -

— ~ - k ~~~ —~~


